4.4 Article

Novel analogs of sulfasalazine as system xc- antiporter inhibitors: Insights from the molecular modeling studies

Journal

DRUG DEVELOPMENT RESEARCH
Volume 80, Issue 6, Pages 758-777

Publisher

WILEY
DOI: 10.1002/ddr.21557

Keywords

cystine-glutamate antiporter; erastin; GBM; glioblastoma multiforme; sorafenib; sulfasalazine; system x(c)(-)

Ask authors/readers for more resources

System x(c)(-) (Sx(c)(-)), a cystine-glutamate antiporter, is established as an interesting target for the treatment of several pathologies including epileptic seizures, glioma, neurodegenerative diseases, and multiple sclerosis. Erastin, sorafenib, and sulfasalazine (SSZ) are a few of the established inhibitors of Sx(c)(-). However, its pharmacological inhibition with novel and potent agents is still very much required due to potential issues, for example, potency, bioavailability, and blood-brain barrier (BBB) permeability, with the current lead molecules such as SSZ. Therefore, in this study, we report the synthesis and structure-activity relationships (SAR) of SSZ derivatives along with molecular docking and dynamics simulations using the developed homology model of xCT chain of Sx(c)(-) antiporter. The generated homology model attempted to address the limitations of previously reported comparative protein models, thereby increasing the confidence in the computational modeling studies. The main objective of the present study was to derive a suitable lead structure from SSZ eliminating its potential issues for the treatment of glioblastoma multiforme (GBM), a deadly and malignant grade IV astrocytoma. The designed compounds with favorable Sx(c)(-) inhibitory activity following in vitro Sx(c)(-) inhibition studies, showed moderately potent cytotoxicity in patient-derived human glioblastoma cells, thereby generating potential interest in these compounds. The xCT-ligand model can be further optimized in search of potent lead molecules for novel drug discovery and development studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available