4.7 Article

Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 100, Issue 19, Pages 8523-8535

Publisher

SPRINGER
DOI: 10.1007/s00253-016-7653-y

Keywords

Fe(II)-oxidizing bacteria; Fe(III)-reducing bacteria; Fe cycling; High-throughput sequencing

Funding

  1. Public Welfare Foundation of the Ministry of Water Resources of China [201501011]
  2. National Natural Science Foundation of China [41103080, 41173028]
  3. Opening Fund of the State Key Laboratory of Environmental Geochemistry [SKLEG2015907]
  4. Guangdong Academy of Sciences [REN [2015] 20]

Ask authors/readers for more resources

A small watershed heavily contaminated by long-term acid mine drainage (AMD) from an upstream abandoned coal mine was selected to study the microbial community developed in such extreme system. The watershed consists of AMD-contaminated creek, adjacent contaminated soils, and a small cascade aeration unit constructed downstream, which provide an excellent contaminated site to study the microbial response in diverse extreme AMD-polluted environments. The results showed that the innate microbial communities were dominated by acidophilic bacteria, especially acidophilic Fe-metabolizing bacteria, suggesting that Fe and pH are the primary environmental factors in governing the indigenous microbial communities. The distribution of Fe-metabolizing bacteria showed distinct site-specific patterns. A pronounced shift from diverse communities in the upstream to Proteobacteria-dominated communities in the downstream was observed in the ecosystem. This location-specific trend was more apparent at genus level. In the upstream samples (sampling sites just below the coal mining adit), a number of Fe(II)-oxidizing bacteria such as Alicyclobacillus spp., Metallibacterium spp., and Acidithrix spp. were dominant, while Halomonas spp. were the major Fe(II)-oxidizing bacteria observed in downstream samples. Additionally, Acidiphilium, an Fe(III)-reducing bacterium, was enriched in the upstream samples, while Shewanella spp. were the dominant Fe(III)-reducing bacteria in downstream samples. Further investigation using linear discriminant analysis (LDA) effect size (LEfSe), principal coordinate analysis (PCoA), and unweighted pair group method with arithmetic mean (UPGMA) clustering confirmed the difference of microbial communities between upstream and downstream samples. Canonical correspondence analysis (CCA) and Spearman's rank correlation indicate that total organic carbon (TOC) content is the primary environmental parameter in structuring the indigenous microbial communities, suggesting that the microbial communities are shaped by three major environmental parameters (i.e., Fe, pH, and TOC). These findings were beneficial to a better understanding of natural attenuation of AMD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available