4.7 Article

Identification of novel toluene monooxygenase genes in a hydrocarbon-polluted sediment using sequence- and function-based screening of metagenomic libraries

Journal

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
Volume 101, Issue 2, Pages 797-808

Publisher

SPRINGER
DOI: 10.1007/s00253-016-7934-5

Keywords

Biodegradation; Toluene 4-monooxygenase; Metagenomics; Catabolic gene diversity; Expression in heterologous hosts; Macroarray

Funding

  1. European Union
  2. Marie Curie Initial Training Network (ITN) 'GOODWATER' [212683]

Ask authors/readers for more resources

The microbial potential for toluene degradation within sediments from a tar oil-contaminated site in Flingern, Germany, was assessed using a metagenomic approach. High molecular weight environmental DNA from contaminated sediments was extracted, purified, and cloned into fosmid and BAC vectors and transformed into Escherichia coli. The fosmid library was screened by hybridization with a PCR amplicon of the alpha-subunit of the toluene 4-monooxygenase gene to identify genes and pathways encoding toluene degradation. Fourteen clones were recovered from the fosmid library, among which 13 were highly divergent from known tmoA genes and several had the closest relatives among Acinetobacter species. The BAC library was transferred to the heterologous hosts Cupriavidus metallidurans (phylum Proteobacteria) and Edaphobacter aggregans (phylum Acidobacteria). The resulting libraries were screened for expression of toluene degradation in the non-degradative hosts. From expression in C. metallidurans, three novel toluene monooxygenase-encoding operons were identified that were located on IncP1 plasmids. The E. aggregans-hosted BAC library led to the isolation of a cloned genetic locus putatively derived from an Acidobacteria taxon that contained genes involved in aerobic and anaerobic toluene degradation. These data suggest the important role of plasmids in the spread of toluene degradative capacity and indicate putative novel tmoA genes present in this hydrocarbon-polluted environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available