4.5 Article

Model of cellular mechanotransduction via actin stress fibers

Journal

BIOMECHANICS AND MODELING IN MECHANOBIOLOGY
Volume 15, Issue 2, Pages 331-344

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-015-0691-z

Keywords

Mechanotransduction; Stress fibers; Cytoskeleton; Endothelial cells; Mechanical model; Force transmission

Funding

  1. Ecole Polytechnique through a Gaspard Monge International Scholarship
  2. AXA Research Fund

Ask authors/readers for more resources

Mechanical stresses due to blood flow regulate vascular endothelial cell structure and function and play a key role in arterial physiology and pathology. In particular, the development of atherosclerosis has been shown to correlate with regions of disturbed blood flow where endothelial cells are round and have a randomly organized cytoskeleton. Thus, deciphering the relation between the mechanical environment, cell structure, and cell function is a key step toward understanding the early development of atherosclerosis. Recent experiments have demonstrated very rapid (100 ms) and long-distance (10 m) cellular mechanotransduction in which prestressed actin stress fibers play a critical role. Here, we develop a model of mechanical signal transmission within a cell by describing strains in a network of prestressed viscoelastic stress fibers following the application of a force to the cell surface. We find force transmission dynamics that are consistent with experimental results. We also show that the extent of stress fiber alignment and the direction of the applied force relative to this alignment are key determinants of the efficiency of mechanical signal transmission. These results are consistent with the link observed experimentally between cytoskeletal organization, mechanical stress, and cellular responsiveness to stress. Based on these results, we suggest that mechanical strain of actin stress fibers under force constitutes a key link in the mechanotransduction chain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available