4.7 Article

Akt Regulates a Rab11-Effector Switch Required for Ciliogenesis

Journal

DEVELOPMENTAL CELL
Volume 50, Issue 2, Pages 229-+

Publisher

CELL PRESS
DOI: 10.1016/j.devcel.2019.05.022

Keywords

-

Funding

  1. Intramural Research Program of the National Institutes of Health, National Cancer Institute
  2. Novo Nordisk Foundation [NNF15OC0014164]
  3. NATIONAL CANCER INSTITUTE [ZIABC011398] Funding Source: NIH RePORTER

Ask authors/readers for more resources

Serum starvation stimulates cilia growth in cultured cells, yet serum factors associated with ciliogenesis are unknown. Previously, we showed that starvation induces rapid Rab11-dependent vesicular trafficking of Rabin8, a Rab8 guanine-nucleotide exchange factor (GEF), to the mother centriole, leading to Rab8 activation and cilium growth. Here, we demonstrate that through the LPA receptor 1 (LPAR1), serum lysophosphatidic acid (LPA) inhibits Rab11a-Rabin8 interaction and ciliogenesis. LPA/LPAR1 regulates ciliogenesis initiation via downstream PI3K/Akt activation, independent of effects on cell cycle. Akt stabilizes Rab11a binding to its effector, WDR44, and a WDR44-pAkt-phosphomimetic mutant blocks ciliogenesis. WDR44 depletion promotes Rabin8 preciliary trafficking and ciliogenesis-initiating events at the mother centriole. Our work suggests disruption of Akt signaling causes a switch from Rab11-WDR44 to the ciliogenic Rab11-FIP3-Rabin8 complex. Finally, we demonstrate that Akt regulates downstream ciliogenesis processes associated with Rab8-dependent cilia growth. Together, this study uncovers a mechanism whereby serum mitogen signaling regulates Rabin8 preciliary trafficking and ciliogenesis initiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available