4.3 Article

Quantitative Analysis of Different Cell Entry Routes of Actively Targeted Nanomedicines Using Imaging Flow Cytometry

Journal

CYTOMETRY PART A
Volume 95A, Issue 8, Pages 843-853

Publisher

WILEY
DOI: 10.1002/cyto.a.23848

Keywords

cell entry; nanomedicine; fusion; endocytosis; imaging flow cytometry

Funding

  1. Breast Cancer Research Foundation
  2. Fellows Tumor Research Fund
  3. Kids at Heart

Ask authors/readers for more resources

A rapid, high-throughput, and quantitative method for cell entry route characterization is still lacking in nanomedicine research. Here, we report the application of imaging flow cytometry for quantitatively analyzing cell entry routes of actively targeted nanomedicines. We first engineered ICAM1 antibody-directed fusogenic nanoliposomes (ICAM1-FusoNLPs) and ICAM1 antibody-directed endocytic nanolipogels (ICAM1-EndoNLGs) featuring highly similar surface properties but different cell entry routes: receptor-mediated membrane fusion and receptor-mediated endocytosis, respectively. By using imaging flow cytometry, we characterized their intracellular delivery into human breast cancer MDA-MB-231 cells. We found that ICAM1-FusoNLPs mediated a 2.8-fold increased cell uptake of fluorescent payload, FITC-dextran, with a 2.4-fold increased intracellular distribution area in comparison with ICAM1-EndoNLGs. We also investigated the effects of incubation time and endocytic inhibitors on the cell entry routes of ICAM1-FusoNLP and ICAM1-EndoNLG. Our results indicate that receptor-mediated membrane fusion is a faster and more efficient cell entry route than receptor-mediated endocytosis, bringing with it a significant therapeutic benefit in a proof-of-principle nanomedicine-mediated siRNA transfection experiment. Our studies suggest that cell entry route may be an important design parameter to be considered in the development of next-generation nanomedicines. (C) 2019 International Society for Advancement of Cytometry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available