3.9 Article

Detecting Brain Tumor using Machines Learning Techniques Based on Different Features Extracting Strategies

Journal

CURRENT MEDICAL IMAGING
Volume 15, Issue 6, Pages 595-606

Publisher

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/1573405614666180718123533

Keywords

Brain tumor; MRI; CAD; Support Vector Machine (SVM); decision tree; naive bayes; morphological; entropy; Scale Invariant Feature Transform (SIFT); texture; Elliptic Fourier Descriptors (EFDs)

Ask authors/readers for more resources

Background: Brain tumor is the leading cause of death worldwide. It is obvious that the chances of survival can be increased if the tumor is identified and properly classified at an initial stage. MRI (Magnetic Resonance Imaging) is one source of brain tumors detection tool and is extensively used in the diagnosis of brain to detect blood clots. In the past, many researchers developed Computer-Aided Diagnosis (CAD) systems that help the radiologist to detect the abnormalities in an efficient manner. Objective: The aim of this research is to improve the brain tumor detection performance by proposing a multimodal feature extracting strategy and employing machine learning techniques. Methods: In this study, we extracted multimodal features such as texture, morphological, entropy-based, Scale Invariant Feature Transform (SIFT), and Elliptic Fourier Descriptors (EFDs) from brain tumor imaging database. The tumor was detected using robust machine learning techniques such as Support Vector Machine (SVM) with kernels: polynomial, Radial Base Function (RBF), Gaussian; Decision Tree (DT), and Naive Bayes. Most commonly used Jack-knife 10-fold Cross-Validation (CV) was used for testing and validation of dataset. Results: The performance was evaluated in terms of specificity, sensitivity, Positive Predictive Value (PPV), Negative Predictive Value (NPV), False Positive Rate (FPR), Total Accuracy (TA), Area under the receiver operating Curve (AUC), and P-value. The highest performance of 100% in terms of Specificity, Sensitivity, PPV, NPV, TA, AUC using Naive Bayes classifiers based on entropy, morphological, SIFT and texture features followed by Decision Tree classifier with texture features (TA=97.81%, AUC=1.0) and SVM polynomial kernel with texture features (TA= 94.63%). The highest significant p-value was obtained using SVM polynomial with texture features (P-value 2.65e-104) followed by SVM RB with texture features (P-value 1.96e-98). Conclusion: The results reveal that Naive Bayes followed by Decision Tree gives highest detection accuracy based on entropy, morphological, SIFT and texture features.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available