4.1 Review

Crossing and zipping: molecular duties of the ZMM proteins in meiosis

Journal

CHROMOSOMA
Volume 128, Issue 3, Pages 181-198

Publisher

SPRINGER
DOI: 10.1007/s00412-019-00714-8

Keywords

Meiosis; Crossover; Recombination; Synaptonemal complex; ZMM

Ask authors/readers for more resources

Accurate segregation of homologous chromosomes during meiosis depends on the ability of meiotic cells to promote reciprocal exchanges between parental DNA strands, known as crossovers (COs). For most organisms, including budding yeast and other fungi, mammals, nematodes, and plants, the major CO pathway depends on ZMM proteins, a set of molecular actors specifically devoted to recognize and stabilize CO-specific DNA intermediates that are formed during homologous recombination. The progressive implementation of ZMM-dependent COs takes place within the context of the synaptonemal complex (SC), a proteinaceous structure that polymerizes between homologs and participates in close homolog juxtaposition during prophase I of meiosis. While SC polymerization starts from ZMM-bound sites and ZMM proteins are required for SC polymerization in budding yeast and the fungus Sordaria, other organisms differ in their requirement for ZMM in SC elongation. This review provides an overview of ZMM functions and discusses their collaborative tasks for CO formation and SC assembly, based on recent findings and on a comparison of different model organisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available