4.7 Article

Eliminating partial-transformation products and mitigating residual toxicity of amoxicillin through intimately coupled photocatalysis and biodegradation

Journal

CHEMOSPHERE
Volume 237, Issue -, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2019.124491

Keywords

Advanced oxidization; Biodegradation; Antibiotics; Ecotoxicity; Pathway

Funding

  1. National Natural Science Foundation of China [51722803, 51578117]

Ask authors/readers for more resources

Intimately coupled photocatalysis and biodegradation (ICPB) is a promising technology for treating wastewater containing antibiotics. While past work has documented the benefits of ICPB for removing and mineralizing antibiotics, its impacts on mitigating biotoxicity from products has not been studied. We fabricated an ICPB carrier by coating Ag-doped TiO2 on the outer skeleton of sponge carriers and allowing biofilm to grow in the internal macro-pores. We used amoxicillin (C16H19N3O5S) as the model antibiotic. The amoxicillin-removal rate contents with ICPB was greater by 40% vs. photocatalysis and 65% vs. biodegradation, based on the first-order kinetic simulation. While mineralization of amoxicillin was minimal for photocatalysis or biodegradation alone, it was similar to 35% with ICPB. Photocatalysis alone led to accumulation of C14H21N3O2S; biodegradation alone resulted in accumulation of C14H21N3O3, C16H18N20O4S, and C15H21N3O3; but they were negligible after ICPB. As a result, ICPB reduced toxicity impacts measured by Staphylococcus aureas growth, Daphnia magna mobility, and teratogenicity to Zebrafish embryos. In contrast, photocatalysis alone increased each of the toxicity effects. In sum, ICPB gave greater removal and mineralization of amoxicillin, and it mitigated biotoxicity from treatment products. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available