4.7 Article

A mathematical model for coupled vibration system of road vehicle and coupling effect analysis

Journal

APPLIED MATHEMATICAL MODELLING
Volume 40, Issue 2, Pages 1199-1217

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.apm.2015.07.012

Keywords

Vehicle; Mathematical modeling; Coupled system; Dynamics; Sensitivity analysis

Funding

  1. National High Technology Research and Development Program of China [2014AA041501]

Ask authors/readers for more resources

A mathematical model describing the dynamics of road transport vehicle is proposed in this paper. The system consists of a cab, a carriage, a chassis, the road, and mounts/suspensions between them. The coupled correlations between substructures are studied using the state space theory. A factor, coupling coefficient, for describing the coupling effect in the subsystem and a factor, vibration attenuation coefficient, for characterizing the vibration reduction of the substructures are derived. The joint location, the stiffness, and the damping of the mount/suspension, as well as the mass and inertia moment of the substructures are considered as design variables affecting system vibration coupling and reduction. The contribution of design variables is analyzed using Latin hypercube sampling and quadratic regression, top ten contributing variables are obtained, and their effects on the subsystem coupling are analyzed and discussed. The back propagation neural network is employed to investigate the nonlinear correlation between subsystem coupling and substructure vibration reduction. The results show the cab vibration reduction achieves optimum when the cab-chassis coupling is high and the carriage-chassis coupling is low. However, the optimal carriage vibration reduction requires the exact opposite coupling correlations. (C) 2015 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available