4.7 Article

Inactivation of water pathogens with solar photo-activated persulfate oxidation

Journal

CHEMICAL ENGINEERING JOURNAL
Volume 381, Issue -, Pages -

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2019.122275

Keywords

Compound parabolic collector; Persulfate; Solar UVA; Solar thermal; Sulfate radicals; Water disinfection

Funding

  1. SFERA - Solar Facilities for the European Research Area [228296]
  2. FCT-Portuguese Foundation for Science and Technology under the Doctoral Programme Agricultural Production Chains - from fork to farm [PD/BD/128270/2017, PD/00122/2012]
  3. CQVR [PEst-C/QUI/UI0616/2014]
  4. European Union's Horizon 2020 research and innovation programme under the Marie SklodowskaCurie grant [660969]
  5. Marie Curie Actions (MSCA) [660969] Funding Source: Marie Curie Actions (MSCA)
  6. Fundação para a Ciência e a Tecnologia [PD/BD/128270/2017] Funding Source: FCT

Ask authors/readers for more resources

The effect of solar activated persulfate oxidation and solar mild thermal heating on water disinfection (PS/solar) was demonstrated for the inactivation of E. coli and E. faecalis in both isotonic water (IW) and synthetic urban wastewater (SUWW). The process was studied in both bench-scale and pilot-scale (60 L CPC solar compound parabolic collector) reactors. The impact of solar ultraviolet (UV) and thermal increase on bacterial inactivation were separately studied. The thermal inactivation at 40 degrees C and 0.5 mM-PS shows a 3-log reduction value (LRV) for E. coli without lag phase and 5-LRV for E. faecalis with a lag phase of 1 h, during 4 h solar exposure. The thermal effect at 50 degrees C played a dominant role, with fast bacterial decay for both bacteria, which dominates the kinetics over the thermal activation of PS. In the presence of PS and solar irradiation, the combined thermal and UVA effects, accelerated the bacterial process. 6-LRV in E. coli and E. faecalis was observed after solar exposure periods of 20 min (solar dose), using 0.5 and 0.7mM of PS in IW, respectively. Longer solar exposure times were required to attain similar LRV in synthetic urban wastewater, in the presence of 25 mg/L of organic matter, i.e. 80 and 100 min (solar dose) for E. coli and E. faecalis, respectively. These results were confirmed at pilot scale, where 60 L of IW were treated with 0.5mM of PS in 50 min (solar dose). The PS/solar process uses low cost chemical reagents (0.5 mM-PS) and a free source of energy (solar radiation) for the treatment of wastewater and is able to achieve the high removals (6-LRV) of the two model faecal indicators of water contamination. This process opens a clear alternative to treat polluted water with organic matter and pathogens with implications in water-energy reclamation field.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available