4.2 Article

Tidal evolution of the Keplerian elements

Journal

CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY
Volume 131, Issue 7, Pages -

Publisher

SPRINGER
DOI: 10.1007/s10569-019-9908-2

Keywords

Body tides; Bodily tides; Land tides; Binary asteroids; Binary stars; Exoplanets; Exomoons

Ask authors/readers for more resources

We address the expressions for the rates of the Keplerian orbital elements within a two-body problem perturbed by the tides in both partners. Formulae for these rates appeared in the literature in various forms, at times with errors. We reconsider, from scratch, the derivation of these rates and arrive at the Lagrange-type equations which, in some details, differ from the corresponding equations obtained previously by Kaula (Rev Geophys 2:661-684, 1964). We also write down detailed expressions for da/dt, de/dt and di/dt, to order e4. They differ from Kaula's expressions which contain a redundant factor of M/(M+M), with M and M being the masses of the primary and the secondary. As Kaula was interested in the Earth-Moon system, this redundant factor was close to unity and was unimportant in his developments. This factor, however, must be removed when Kaula's theory is applied to a binary composed of partners of comparable masses. We have found that while it is legitimate to simply sum the primary's and secondary's inputs in da/dt or de/dt, this is not the case for di/dt. So our expression for di/dt differs from that of Kaula in two regards. First, the contribution due to the dissipation in the secondary averages out when the apsidal precession is uniform. Second, we have obtained an additional term which emerges owing to the conservation of the angular momentum: a change in the inclination of the orbit causes a change of the primary's plane of equator.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available