4.8 Article

Efficient and controllable growth of vertically oriented graphene nanosheets by mesoplasma chemical vapor deposition

Journal

CARBON
Volume 147, Issue -, Pages 341-347

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2019.01.042

Keywords

-

Funding

  1. National Key Research and Development of China [2016YFB0700202]
  2. Instrument Developing Project of the Chinese Academy of Sciences
  3. National Natural Science Foundation of China [51502315, 61574145]
  4. Natural Science Foundation of China [61874177]

Ask authors/readers for more resources

Owing to the unique nanoarchitecture and graphene in nature, the vertically oriented graphene nanosheets (VGN) possesses many promising properties and holds great potential for various applications. Although the plasma-enhanced chemical vapor deposition (PECVD) techniques have been the effective and widely used approaches, they remain the challenge for the controllable and efficient growth of VGN for the mass and intended applications. Also, each method provides limited structures. Herein, for the first time, we report a synthesis of VGN with various controllable structures and fast growth rates by mesoplasma CVD at Ar-H-2-CH4 gas mixture. Five types of structures, including cauliflower-like, petal-like, quasi-maze-like, maze-like, and floc-like structures are synthesized by simply adjusting the growth parameters. The growth dynamics and structure transition of VGN are analyzed from the aspect of the deposition precursor density and the H/C ratio. Even at no H-2 addition, VGN is synthesized at mesoplasma condition and an extremely high rate of 18.08 mm/min is obtained, which is at least one order of magnitude faster than any other methods reported. This work provides a new route to increase the growth rate of VGN and also demonstrates the advantages of mesoplasma CVD for the growth of high quality films with high efficiency. (C) 2019 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available