4.5 Article

miR-1247-3p mediates apoptosis of cerebral neurons by targeting caspase-2 in stroke

Journal

BRAIN RESEARCH
Volume 1714, Issue -, Pages 18-26

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2019.02.020

Keywords

miR-1247-3p; Caspase-2; Apoptosis; Myocardin-related transcription factor-A; Ischemia/reperfusion; Stroke

Categories

Funding

  1. National Nature Science Foundation of China [81770377]
  2. Nature Science Foundation of Hubei Province [2017CFB448]

Ask authors/readers for more resources

Brain stroke is one of the leading causes of death worldwide. We explored a potential stroke-related role for a newly found microRNA, miR-1247-3p, and one of its target genes, caspase-2, predicted by TargetScanVert. In the present study, we found that miR-1247-3p was downregulated during ischemia/reperfusion (I/R) and that LV-miR-1247-3p overexpression attenuated brain impairment induced by I/R. Similar results were observed in neuro2a (N2a) cells treated with oxygen -glucose deprivation/reoxygenation (OGD/R). Caspase-2 was upregulated in the I/R and OGD/R model, while Z-VDVAD-FMK the inhibitor of caspase-2-inhibited apoptosis of N2a cells induced by OGD/R. An miR-1247-3p mimic inhibited caspase-2 expression and attenuated apoptosis of N2a cells induced by OGD/R. Myocardin-related transcription factor-A (MRTF-A) overexpression upregulated miR-1247 and mature miR-1247-3p levels and attenuated apoptosis induced by OGD/R, whereas its anti-apoptotic function could be blocked by a miR-1247-3p inhibitor. Hence, we conclude that miR-1247-3p may protect cells during brain stroke. This study offers insights for the development of effective therapeutics for promoting the survival of cerebral neurons during brain I/R injury.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available