4.6 Article

Leveraging the effects of chloroquine on resistant malaria parasites for combination therapies

Journal

BMC BIOINFORMATICS
Volume 20, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/s12859-019-2756-y

Keywords

Malaria; Combination therapies; Chloroquine; Metabolic modeling

Funding

  1. National Institute of Allergy and Infectious Disease [R21AI119881]
  2. Arnold and Mabel Beckman Foundation
  3. [T32GM008136]

Ask authors/readers for more resources

Background: Malaria is a major global health problem, with the Plasmodium falciparum protozoan parasite causing the most severe form of the disease. Prevalence of drug-resistant P. falciparum highlights the need to understand the biology of resistance and to identify novel combination therapies that are effective against resistant parasites. Resistance has compromised the therapeutic use of many antimalarial drugs, including chloroquine, and limited our ability to treat malaria across the world. Fortunately, chloroquine resistance comes at a fitness cost to the parasite; this can be leveraged in developing combination therapies or to reinstate use of chloroquine. Results: To understand biological changes induced by chloroquine treatment, we compared transcriptomics data from chloroquine-resistant parasites in the presence or absence of the drug. Using both linear models and a genome-scale metabolic network reconstruction of the parasite to interpret the expression data, we identified targetable pathways in resistant parasites. This study identified an increased importance of lipid synthesis, glutathione production/cycling, isoprenoids biosynthesis, and folate metabolism in response to chloroquine. Conclusions: We identified potential drug targets for chloroquine combination therapies. Significantly, our analysis predicts that the combination of chloroquine and sulfadoxine-pyrimethamine or fosmidomycin may be more effective against chloroquine-resistant parasites than either drug alone; further studies will explore the use of these drugs as chloroquine resistance blockers. Additional metabolic weaknesses were found in glutathione generation and lipid synthesis during chloroquine treatment. These processes could be targeted with novel inhibitors to reduce parasite growth and reduce the burden of malaria infections. Thus, we identified metabolic weaknesses of chloroquine-resistant parasites and propose targeted chloroquine combination therapies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available