4.7 Review

Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization

Journal

BIOTECHNOLOGY ADVANCES
Volume 37, Issue 7, Pages -

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biotechadv.2019.06.007

Keywords

CO2 reduction; Carbon capture and utilization; Formate; Biocatalysis; FDH gene segment organization; FDH classification; Electrocatalysis

Funding

  1. Technical University of Denmark
  2. BioValue SPIR, Strategic Platform for Innovation and Research on value added products from biomass
  3. Innovation Fund Denmark [0603-00522B]

Ask authors/readers for more resources

The reversible interconversion of formate (HCOO-) and carbon dioxide (CO2) is catalyzed by formate dehydrogenase (FDH, EC 1.17.1.9). This enzyme can be used as a first step in the utilization of CO2 as carbon substrate for production of high-in-demand chemicals. However, comparison and categorization of the very diverse group of FDH enzymes has received only limited attention. With specific emphasis on FDH catalyzed CO2 reduction to HCOO-, we present a novel classification scheme for FDHs based on protein sequence alignment and gene organization analysis. We show that prokaryotic FDHs can be neatly divided into six meaningful sub-types. These sub-types are discussed in the context of overall structural composition, phylogeny of the gene segment organization, metabolic role, and catalytic properties of the enzymes. Based on the available literature, the influence of electron donor choice on the efficacy of FDH catalyzed CO2 reduction is quantified and compared. This analysis shows that methyl viologen and hydrogen are several times more potent than NADH as electron donors. Hence, the new FDH classification scheme and the electron donor analysis provide an improved base for developing FDH-facilitated CO2 reduction as a viable step in the utilization of CO2 as carbon source for green production of chemicals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available