4.8 Article

Improving ethanol yields with deacetylated and two-stage pretreated corn stover and sugarcane bagasse by blending commercial xylose-fermenting and wild type Saccharomyces yeast

Journal

BIORESOURCE TECHNOLOGY
Volume 282, Issue -, Pages 103-109

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biortech.2019.02.123

Keywords

Corn stover; Sugarcane bagasse; Deacetylation; Bioethanol; Mixed yeast culture; Two-stage pretreatment

Funding

  1. DOE Center for Advanced Bioenergy and Bioproducts Innovation (U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research) [DE-SC0018420]

Ask authors/readers for more resources

Corn stover and sugarcane bagasse are the most widely available agriculture processing biomass and could serve as feedstocks for production of biofuel. In this study, three different technologies are combined to develop a more efficient conversion process for each of these feedstocks. The three technologies are diluted alkaline deacetylation process, combined thermochemical and mechanical shear pretreatment, and fermentation using a combined inoculum of two commercial Saccharomyces yeast strains. The two yeast strains used were a non-GMO and GMO strain engineered for xylose fermentation. The final ethanol concentrations obtained were 35.7 g/L from deacetylated corn stover and 32.9 g/L from sugarcane bagasse. Blending the two yeast reduced residual xylose content from 1.24 g/L to 0.48 g/L and increased ethanol production by 6.5% compared to solely using the C5/C6 yeast. The optimized yeast blend also lowered the amount of C5/C6 yeast required for inoculation by 80%.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available