4.7 Article

Molecular interaction of manganese based carbon monoxide releasing molecule (MnCORM) with human serum albumin (HSA)

Journal

BIOORGANIC CHEMISTRY
Volume 92, Issue -, Pages -

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bioorg.2019.103078

Keywords

Carbon monoxide releasing molecule; Human serum albumin; Fluorescence; Mixed quenching; Prodrug

Funding

  1. DBT

Ask authors/readers for more resources

In the present study, the interaction between the HSA and MnCORM in vitro under physiological conditions, was investigated through ultraviolet-visible (UV-vis) absorption, fluorescence, time-resolved fluorescence, circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopic techniques and in silico molecular docking methods. Binding parameters such as the binding constant, number of binding sites and binding force were obtained from the fluorescence data. Thermodynamic interaction revealed that the reaction was spontaneous (Delta G < 0) and hydrogen bond and van der Waals interaction were primarily involved in the binding. The changes induced in the secondary structure conformation due to the MnCORM interaction were monitored using CD and FT-IR spectroscopic techniques. The results showed reduction in alpha-helix conformation and corresponding increase in beta-sheet and unordered structures due to slight unfolding. The time-resolved fluorescence decay confirmed the static quenching mechanism of the MnCORM. The molecular docking studies revealed that the MnCORM interacted at Sudlow's site II of domain IIIA through hydrogen bond and van der Waals interactions. In order to understand the drug distribution and elimination, studies on the drug molecule interaction with HSA are vital. Therefore, it is evident that MnCORM interacts with HSA through ground state complex formation and thus suitable for in vivo delivery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available