4.7 Article

Effective delignification and decrystallization of cauliflower wastes by using dilute phosphoric acid for efficient enzymatic digestibility to produce fermentable sugars

Journal

BIOMASS & BIOENERGY
Volume 125, Issue -, Pages 169-179

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biombioe.2019.04.017

Keywords

Dilute H3PO4; Cauliflower wastes; Cellulase; Fermentable sugars; Enzymatic hydrolysis; Lignocellulosic biomass

Funding

  1. UGC

Ask authors/readers for more resources

The present study investigated the feasibility of using cauliflower wastes (stalk and leaf) as novel feedstock for production of fermentable sugars, thus reducing the wastage. In this investigation cauliflower wastes were pretreated with dilute phosphoric acid (H3PO4) prior to enzymatic hydrolysis for better release of fermentable sugars. Maximum total reducing sugar yields were achieved at 121 degrees C, 4% v/v dilute H3PO4 concentration and 60 min for both the waste biomasses. The structural analysis of raw and pretreated cauliflower wastes was investigated. The surface morphological changes of cauliflower waste biomasses revealed that removal of hemicellulose and lignin during dilute H3PO4 pretreatment exposed cellulose fibers resulting in the destruction of the recalcitrant structure of biomasses. SEM and XRD analysis revealed that the crystalline structure of cellulose in the pretreated biomasses was transformed from cellulose Ito the amorphous form causing changes in the porosity and cellulose crystallinity index. The pretreatment process have demonstrated improved yield of cellulose by removal of physical barriers namely, hemicellulose and lignin from the waste biomasses. The cellulose conversion to fermentable sugar was significantly greater for pretreated biomasses. After enzymatic saccharification with commercial cellulase, Celluclase (R) at the same pretreatment conditions cellulose conversion to fermentable sugar were found to be significantly increased than those of untreated biomasses. The optimum operation condition of enzymatic hydrolysis of 4% v/v dilute H3PO4 pretreated cauliflower wastes were biomass loading of 1.2% w/v, enzyme loading 15 U/g, pH 4, incubation temperature 50 degrees C and incubation time 180 min.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available