4.6 Article

Interaction of the Homer1 EVH1 domain and skeletal muscle ryanodine receptor

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2019.04.199

Keywords

Ryanodine receptor; Homer1 EVH1; Calcium; Physical interaction; High-affinity; Binding model

Funding

  1. National Natural Science Foundation of China [31770785, 31570732]
  2. National Key Research and Development Program of China [2017YFA0504702]

Ask authors/readers for more resources

The skeletal muscle ryanodine receptor (RyR1) proteins are intracellular calcium (Ca2+) release channels on the membrane of the sarcoplasmic reticulum (SR) and required for skeletal muscle excitation contraction coupling. Homer (Vesl) is a family of scaffolding proteins that modulate target proteins including RyRs (ryanodine receptors), mGluRs (group 1 metabotropic glutamate receptors) and IP(3)Rs (inositol-1,4,5-trisphosphate receptors) through a conserved EVH1 (Ena/VASP homology 1) domain. Here, we examined the interaction between Homer1 EVH1 domain and RyR1 by coimmunoprecipitation, continuous sucrose density-gradient centrifugation, and bio-layer interferometry binding assay at different Ca2+ concentrations. Our results show that there exists a high-affinity binding between the Homer1 EVH1 domain and RyR1, especially at 1 mM of Ca2+. Based on our data and the known structures of Homer1 EVH1 domain and RyR1, we found two consensus proline-rich sequences in the structure of RyR1, PPHHF and FLPPP, and proposed two corresponding binding models to show mechanisms of recognition different from those used by other proline-rich motifs. The side proline residues of two proline-rich motifs from RyR1 are away from the hydrophobic surface of Homer1 EVH1, rather than buried in this hydrophobic surface. Our results provide evidence that Homer1 regulates RyR1 by direct interaction. (C) 2019 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available