4.8 Article

Novel microstructured polyol-polystyrene composites for seasonal heat storage

Journal

APPLIED ENERGY
Volume 172, Issue -, Pages 96-106

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2016.03.023

Keywords

Seasonal thermal energy storage; Supercooling; Crystallization; Polyol; High internal phase emulsion

Funding

  1. Fortum Foundation
  2. Aalto Energy Efficiency Research Programme (EXPECTS-project)
  3. Academy of Finland through its COMP CoE [251748, 284621]
  4. Finnish Funding Agency for Technology and Innovation, Tekes

Ask authors/readers for more resources

We propose a robust route to prepare novel supercooling microstructured phase change materials (PCMs) suitable for seasonal thermal energy storage (STES) or heat protection applications. Two supercooling polyols, erythritol and xylitol, are successfully prepared as novel microencapsulated PCM-polystyrene composites with polyol mass fractions of 62 wt% and 67 wt%, respectively, and average void diameter of similar to 50 gm. Thermal properties of the composites and bulk polyols are studied thoroughly with differential scanning calorimetry (DSC) and thermal conductivity analyzer. Significant differences in heat storage properties of microstructured and bulk PCM are observed. The heat release of microstructured erythritol is more controlled than that of bulk PCM, making the novel microengineered PCMs particularly interesting for STES. In the case of bulk PCM, the heat release may occur spontaneously due to crystallization by surface roughnesses or impurities, whereas these factors have only little,impact on the crystallization of microstructured erythritol, making the novel composite more reliable for long-term heat storage purposes. In addition, microstructured polyol-polystyrene composites show anomalous enhancement in the specific heat as compared to bulk polyols. This enhancement may originate from strong polyol-surfactant interactions in the composites. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available