4.8 Article

CFD analysis of melting process in a shell-and-tube latent heat storage for concentrated solar power plants

Journal

APPLIED ENERGY
Volume 164, Issue -, Pages 711-722

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2015.11.106

Keywords

CFD; Thermal Energy Storage (TES); Phase Change Material (PCM); Molten salts; Shell and tube; Enthalpy-porosity model

Funding

  1. Annual Research Plan (PAR) of the Electric System Research Program (RSE) of the Italian Minister of the Economic Development
  2. SMART ENERGY BOXES (SEB) [PON02_00323_3588749]

Ask authors/readers for more resources

A latent heat storage system for concentrated solar plants (CSP) is numerically examined by means of CFD simulations. This study aims at identifying the convective flows produced within the melted phase by temperature gradients and gravity. Simulations were carried out on experimental devices for applications to high temperature concentrated solar power plants. A shell-and-tube geometry composed by a vertical cylindrical tank, filled by a Phase Change Material (PCM) and an inner steel tube, in which the heat transfer fluid (HTF) flows, from the top to the bottom, is considered. The conjugate heat transfer process is examined by solving the unsteady Navier Stokes equations for HTF and PCM and conduction for the tube. In order to take into account the buoyancy effects in the PCM tank the Boussinesq approximation is adopted. The results show that the enhanced heat flux, due to natural convective flow, reduce of about 30% the time needed to charge the heat storage. A detailed description of the convective motion in the melted phase and the heat flux distribution between the HTF and PCM are reported. The effect of the mushy zone constant is also investigated. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available