4.6 Article

Heterodyne detection of radio-frequency electric fields using point defects in silicon carbide

Journal

APPLIED PHYSICS LETTERS
Volume 115, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.5108913

Keywords

-

Funding

  1. University of Chicago/Advanced Institute for Materials Research (AIMR) Joint Research Center
  2. Department of Defense through the NDSEG Program
  3. NSF GRFP
  4. DOE, Office of Basic Energy Sciences
  5. SHyNE, a node of the NSF's National Nanotechnology Coordinated Infrastructure [NSF ECCS-1542205]

Ask authors/readers for more resources

Sensing electric fields with high sensitivity, high spatial resolution, and at radio frequencies can be challenging to realize. Recently, point defects in silicon carbide have shown their ability to measure local electric fields by optical conversion of their charge state. Here, we report the combination of heterodyne detection with charge-based electric field sensing, solving many of the previous limitations of this technique. Owing to the nonlinear response of the charge conversion to electric fields, the application of a separate pump electric field results in a detection sensitivity as low as 1.1(V/cm)/Hz, with a near-diffraction limited spatial resolution and tunable control of the sensor dynamic range. In addition, we show both incoherent and coherent heterodyne detection, allowing measurements of either unknown random fields or synchronized fields with higher sensitivities. Finally, we demonstrate in-plane vector measurements of the electric field by combining orthogonal pump electric fields. Overall, this work establishes charge-based measurements as highly relevant for solid-state defect sensing.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available