4.8 Article

Interactions of rooftop PV deployment with the capacity expansion of the bulk power system

Journal

APPLIED ENERGY
Volume 168, Issue -, Pages 473-481

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2016.02.004

Keywords

Rooftop PV adoption; Capacity expansion modeling; Grid integration; ReEDS; dSolar

Funding

  1. Solar Energy Technologies Office of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy [DE-AC36-08GO28308]
  2. U.S. Department of Energy Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships (SULI) program

Ask authors/readers for more resources

Distribution-sited solar photovoltaics (PV) economics (including rooftop PV) have improved significantly during the past several years, spurring increased installations, with over 2.2 GW installed in 2014 in the United States. This increased deployment is largely projected to continue and has prompted additional interest in the interactions of rooftop PV deployment with the greater electricity system. In this paper we focus on one piece of this interface, namely the interaction between rooftop PV deployment and the evolution of the bulk power system. We develop a novel linkage between NREL's bulk power capacity expansion model (the Renewable Energy Deployment System [ReEDS] model) and NREL's rooftop PV adoption model (the dSolar model). We use these linked models to gain insights into the interactions of rooftop PV deployment with the bulk power system. We explore two sets of scenarios. In the first set we examine how different levels of rooftop PV deployment impact the generation mix on the bulk power system. In the second set we examine how the generation mix of the bulk power system impacts the deployment of rooftop PV by applying grid-wide curtailment rates to rooftop PV systems. In these sets of scenarios, we find that rooftop PV generation and utility PV generation have a nearly 1:1 substitution effect. We also find that curtailment rate feedback can have dramatic impacts on rooftop PV adoption, though the range of impacts is strongly dependent on the generation mix of the bulk power system and the amount of total PV generation in the system. For example, scenarios with more natural gas generation tended to have lower curtailment rates and thus more rooftop PV deployment. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available