4.8 Article

Single-Atom Cr-N4 Sites Designed for Durable Oxygen Reduction Catalysis in Acid Media

Related references

Note: Only part of the references are listed.
Article Chemistry, Multidisciplinary

Versatile Strategy for Tuning ORR Activity of a Single Fe-N4 Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane

Yeongdong Mun et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2019)

Article Chemistry, Multidisciplinary

A Single-Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction

Meiling Xiao et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2019)

Review Chemistry, Multidisciplinary

PGM-Free Cathode Catalysts for PEM Fuel Cells: A Mini-Review on Stability Challenges

Yuyan Shao et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

Fabricating Single-Atom Catalysts from Chelating Metal in Open Frameworks

Yichao Lin et al.

ADVANCED MATERIALS (2019)

Article Chemistry, Multidisciplinary

Regulation of Coordination Number over Single Co Sites: Triggering the Efficient Electroreduction of CO2

Xiaoqian Wang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Multidisciplinary

The Achilles' heel of iron-based catalysts during oxygen reduction in an acidic medium

Chang Hyuck Choi et al.

ENERGY & ENVIRONMENTAL SCIENCE (2018)

Article Chemistry, Multidisciplinary

Hollow N-Doped Carbon Spheres with Isolated Cobalt Single Atomic Sites: Superior Electrocatalysts for Oxygen Reduction

Yunhu Han et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2017)

Article Chemistry, Multidisciplinary

Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction

Yuanjun Chen et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2017)

Review Chemistry, Multidisciplinary

Earth-Abundant Nanomaterials for Oxygen Reduction

Wei Xia et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Review Chemistry, Multidisciplinary

Reactivity Descriptors for the Activity of Molecular MN4 Catalysts for the Oxygen Reduction Reaction

Jose H. Zagal et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2016)

Review Chemistry, Inorganic & Nuclear

PEM fuel cell electrocatalysts based on transition metal macrocyclic compounds

Yuyu Liu et al.

COORDINATION CHEMISTRY REVIEWS (2016)

Article Chemistry, Multidisciplinary

Graphene Quantum Dots-Band-Aids Used for Wound Disinfection

Hanjun Sun et al.

ACS NANO (2014)

Article Chemistry, Multidisciplinary

Phenylenediamine-Based FeNx/C Catalyst with High Activity for Oxygen Reduction in Acid Medium and Its Active-Site Probing

Qiang Wang et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2014)

Review Chemistry, Multidisciplinary

Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis

Xiao-Feng Yang et al.

ACCOUNTS OF CHEMICAL RESEARCH (2013)

Article Chemistry, Multidisciplinary

Activity Descriptor Identification for Oxygen Reduction on Nonprecious Electrocatalysts: Linking Surface Science to Coordination Chemistry

Nagappan Ramaswamy et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2013)

Article Materials Science, Multidisciplinary

Fabrication of highly fluorescent graphene quantum dots using L-glutamic acid for in vitro/in vivo imaging and sensing

Xu Wu et al.

JOURNAL OF MATERIALS CHEMISTRY C (2013)

Article Nanoscience & Nanotechnology

An oxygen reduction electrocatalyst based on carbon nanotube-graphene complexes

Yanguang Li et al.

NATURE NANOTECHNOLOGY (2012)

Review Electrochemistry

Free energy relationships in electrochemistry: a history that started in 1935

Anthony John Appleby et al.

JOURNAL OF SOLID STATE ELECTROCHEMISTRY (2011)

Review Electrochemistry

The use of macrocyclic compounds as electrocatalysts in fuel cells

Z. P. Li et al.

JOURNAL OF APPLIED ELECTROCHEMISTRY (2010)

Article Instruments & Instrumentation

A new FEFF-based wavelet for EXAFS data analysis

Harald Funke et al.

JOURNAL OF SYNCHROTRON RADIATION (2007)