4.8 Article

Mesoporous Silica Containers and Programmed Catalytic Hairpin Assembly/Hybridization Chain Reaction Based Electrochemical Sensing Platform for MicroRNA Ultrasensitive Detection with Low Background

Journal

ANALYTICAL CHEMISTRY
Volume 91, Issue 16, Pages 10672-10678

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b01947

Keywords

-

Funding

  1. Natural Science Foundation of China [21675046, 21735002, 21521063, 21874035]
  2. key point research and invention program of Hunan province [2017DK2011]

Ask authors/readers for more resources

In this work, based on mesoporous silica containers (MSNs) with the programmed enzyme-free DNA assembly amplification of catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR), an ultrasensitive electrochemical sensing platform with low background is developed for the detection of microRNA (miRNA). Herein, the electrochemical reporter methylene blue (MB) was sealed in the pores of MSNs by the double-stranded DNA (dsDNA) gate of hairpin DNA H1 and anchor DNA. In the absence of target, neither the CHA nor the HCR process happened, which enabled a low background. After target was added, DNA HI was displaced from the MSNs surface and participated in the CHA process with the assistance of hairpin DNA H2, which accelerated the release of MB from the MSNs pore. Meanwhile, the CHA products H1-H2 were hybridized with the capture probes (SH-CP) on the electrode surface, which further initiated the HCR process. The released MB from the MSNs will effectively intercalate into long dsDNA polymers of HCR products, resulting in a significant electrochemical response. Taking miRNA-21 as the model target, the proposed sensing satisfactory detection limit down to 0.037 fM, which is lower than that of electrochemical assay with amplification methods. In addition, the strategy shows good selectivity against other miRNAs and is capable in practical analytes. Benefitting from the features of being label-free and enzyme-free and having low background, high sensitivity, and selectivity, this strategy shows great potential in bioanalysis and clinical diagnostics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available