4.8 Article

Measurement of Sub-femtomolar Concentrations of Prostate-Specific Antigen through Single-Molecule Counting with an Upconversion-Linked Immunosorbent Assay

Journal

ANALYTICAL CHEMISTRY
Volume 91, Issue 15, Pages 9435-9441

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.analchem.9b02872

Keywords

-

Funding

  1. COST Action [CM1403]
  2. German Academic Exchange Service (DAAD)
  3. German Research Foundation [DFG: GO 1968/5-1, GO 1968/6-1]
  4. Ministry of Education, Youth and Sports of the Czech Republic [LQ1601]
  5. Czech Science Foundation [18-03367Y, 19-00676S]

Ask authors/readers for more resources

Single-molecule (digital) immunoassays provide the ability to detect much lower protein concentrations than conventional immunoassays. As photon-upconversion nanoparticles (UCNPs) can be detected without optical background interference, they are excellent labels for so-called single-molecule upconversion-linked immunosorbent assays (ULISAs). We have introduced a UCNP label design based on streptavidin-PEG-neridronate and a two-step detection scheme involving a biotinylated antibody that efficiently reduces nonspecific binding on microtiter plates. In a microtiter plate immunoassay, individual sandwich immune complexes of the cancer marker prostate-specific antigen (PSA) are detected and counted by wide-field epiluminescence microscopy (digital readout). The digital detection is 16X more sensitive than the respective analogue readout and thus expands the limit of detection to the sub-femtomolar concentration range (LOD: 23 fg mL(-1), 800 aM). The single molecule ULISA shows excellent correlation with an electrochemiluminescence reference method. Although the analogue readout can routinely measure PSA concentrations in human serum samples, very low concentrations have to be monitored after radical prostatectomy. Combining the digital and analogue readout covers a dynamic range of more than 3 orders of magnitude in a single experiment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available