4.7 Article

Direct acid activation of kaolinite and its effects on the adsorption of methylene blue

Journal

APPLIED CLAY SCIENCE
Volume 126, Issue -, Pages 98-106

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.clay.2016.03.006

Keywords

Kaolinite; Acid activation; Methylene blue; Adsorption

Funding

  1. National Natural Science Foundation of China [21267016, 21367020]
  2. Program for Inner Mongolia Excellence Specialist

Ask authors/readers for more resources

Coal-bearing kaolinite was directly treated with concentrated sulfuric acid to improve its surface properties and adsorption ability. Acid treatment was carried out at various temperatures (i.e., room temperature -250 degrees C), by varying time of treatment from 0 to 120 min. The samples were characterized by X-ray diffraction analysis, elemental analyses, thermogravimetric analysis, N-2 adsorption-desorption analysis, high-resolution transmission electron microscopy, and Fourier transformed infrared spectroscopy. The activation of kaolinite strongly depended on the acid treatment including treatment temperature and time. Acid treatment at room temperature did not cause significant alterations either in the chemical composition or in the structure of the kaolinite. On the other hand, treatment at increased temperature led to the removal of Al3+ ions and thus increased the porosity of the material. The surface area and the pore volume of original kaolinite could be greatly changed as a function of treatment temperature and time of treatment, and they increased from 13.6 to 257.8 m(2) g(-1) and from 0.045 to 025 cm(3) g(-1), respectively, when the kaolinite was treated at 200 degrees C for 30 min. The adsorption ability of acid activated kaolinite (AAK) was investigated using methylene blue (MB) as a typical pollutant. For this, the effects of contact time, pH, initial MB concentration and temperature were studied in batch mode. Gibb's free energy (Delta G degrees), entropy (Delta S degrees) and enthalpy (Delta H degrees) changes for MB adsorption were calculated. Owing to its high surface area, the AAK showed higher removal efficiency for MB than for original kaolinite, with a maximum adsorption capacity of 101.5 mg g(-1). (C) 2016 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available