4.8 Article

Interfacing Manganese Oxide and Cobalt in Porous Graphitic Carbon Polyhedrons Boosts Oxygen Electrocatalysis for Zn-Air Batteries

Journal

ADVANCED MATERIALS
Volume 31, Issue 39, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201902339

Keywords

bifunctional electrocatalysts; graphitic carbon; MnO; Co heterointerfaces; Zn-air batteries

Funding

  1. National Research Foundation (NRF) of Singapore [NRF-NRFI2016-04]
  2. Ministry of Education of Singapore through Academic Research Fund (AcRF) Tier-1 [M4011783, RG5/17 (S)]
  3. National Natural Science Foundation of China [U1804255]

Ask authors/readers for more resources

Rational design and synthesis of highly active and robust bifunctional non-noble electrocatalysts for both oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are urgently required for efficient rechargeable metal-air batteries. Herein, abundant MnO/Co heterointerfaces are engineered in porous graphitic carbon (MnO/Co/PGC) polyhedrons via a facile hydrothermal-calcination route with a bimetal-organic framework as the precursor. The in situ generated Co nanocrystals not only create well-defined heterointerfaces with high conductivity to overcome the poor OER activity but also promote the formation of robust graphitic carbon. Owing to the desired composition and formation of the heterostructures, the resulting MnO/Co/PGC exhibits superior activity and stability toward both OER and ORR, which makes it an efficient air cathode for the rechargeable Zn-air battery. Importantly, the homemade Zn-air battery is able to deliver excellent performance including a peak power density of 172 mW cm(-2) and a specific capacity of 872 mAh g(-1), as well as excellent cycling stability (350 cycles), outperforming commercial mixed Pt/C||RuO2 catalysts. This work highlights the synergy from heterointerfaces in oxygen electrocatalysis, thus providing a promising approach for advanced metal-air cathode materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available