4.8 Article

Engineering Biomimetic Platesomes for pH-Responsive Drug Delivery and Enhanced Antitumor Activity

Journal

ADVANCED MATERIALS
Volume 31, Issue 32, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201900795

Keywords

biomimetic platesomes; drug release; targeted drug delivery

Ask authors/readers for more resources

Biomimetic camouflage, i.e., using natural cell membranes for drug delivery, has demonstrated advantages over synthetic materials in both pharmacokinetics and biocompatibility, and so represents a promising solution for the development of safe nanomedicine. However, only limited efforts have been dedicated to engineering such camouflage to endow it with optimized or additional properties, in particular properties critical to a smart drug delivery system, such as stimuli-responsive drug release. A pH-responsive biomimetic platesome for specific drug delivery to tumors and tumor-triggered drug release is described. This platesome nanovehicle is constructed by merging platelet membranes with functionalized synthetic liposomes and exhibits enhanced tumor affinity, due to its platelet membrane-based camouflage, and selectively releases its cargo in response to the acidic microenvironment of lysosomal compartments. In mouse cancer models, it shows significantly better antitumor efficacy than nanoformulations based on a platesome without pH responsiveness or those based on traditional pH-sensitive liposomes. A convenient way to incorporate stimuli-responsive features into biomimetic nanoparticles is described, demonstrating the potential of engineered cell membranes as biomimetic camouflages for a new generation of biocompatible and efficient nanocarriers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available