4.8 Review

The Future of Neuroimplantable Devices: A Materials Science and Regulatory Perspective

Journal

ADVANCED MATERIALS
Volume 32, Issue 15, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adma.201901482

Keywords

biocompatible materials; brain-computer interfaces; conformable hybrid devices; FDA regulatory processes; neuroimplantable devices

Ask authors/readers for more resources

The past two decades have seen unprecedented progress in the development of novel materials, form factors, and functionalities in neuroimplantable technologies, including electrocorticography (ECoG) systems, multielectrode arrays (MEAs), Stentrode, and deep brain probes. The key considerations for the development of such devices intended for acute implantation and chronic use, from the perspective of biocompatible hybrid materials incorporation, conformable device design, implantation procedures, and mechanical and biological risk factors, are highlighted. These topics are connected with the role that the U.S. Food and Drug Administration (FDA) plays in its regulation of neuroimplantable technologies based on the above parameters. Existing neuroimplantable devices and efforts to improve their materials and implantation protocols are first discussed in detail. The effects of device implantation with regards to biocompatibility and brain heterogeneity are then explored. Topics examined include brain-specific risk factors, such as bacterial infection, tissue scarring, inflammation, and vasculature damage, as well as efforts to manage these dangers through emerging hybrid, bioelectronic device architectures. The current challenges of gaining clinical approval by the FDA-in particular, with regards to biological, mechanical, and materials risk factors-are summarized. The available regulatory pathways to accelerate next-generation neuroimplantable devices to market are then discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available