4.8 Article

Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Low-Temperature Tolerant Strain Sensors

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 29, Issue 39, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201904507

Keywords

antifreezing; flexible wearable strain sensors; MXene; organohydrogels; self-healing

Funding

  1. National Natural Science Foundation of China
  2. Beijing Natural Science Foundation [2152023]
  3. National Key Research and Development Project [2016YFC0801302]
  4. Fundamental Research Funds for the Central Universities
  5. Sloan Research Fellowship
  6. Welch Foundation [F-1861]

Ask authors/readers for more resources

Conductive hydrogels are attracting tremendous interest in the field of flexible and wearable soft strain sensors because of their great potential in electronic skins, and personalized healthcare monitoring. However, conventional conductive hydrogels using pure water as the dispersion medium will inevitably freeze at subzero temperatures, resulting in the diminishment of their conductivity and mechanical properties; meanwhile, even at room temperature, such hydrogels suffer from the inevitable loss of water due to evaporation, which leads to a poor shelf-life. Herein, an antifreezing, self-healing, and conductive MXene nanocomposite organohydrogel (MNOH) is developed by immersing MXene nanocomposite hydrogel (MNH) in ethylene glycol (EG) solution to replace a portion of the water molecules. The MNH is prepared from the incorporation of the conductive MXene nanosheet networks into hydrogel polymer networks. The as-prepared MNOH exhibits an outstanding antifreezing property (-40 degrees C), long-lasting moisture retention (8 d), excellent self-healing capability, and superior mechanical properties. Furthermore, this MNOH can be assembled as a wearable strain sensor to detect human biologic activities with a relatively broad strain range (up to 350% strain) and a high gauge factor of 44.85 under extremely low temperatures. This work paves the way for potential applications in electronic skins, human-machine interactions, and personalized healthcare monitoring.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available