4.8 Article

Self-Propelled 3D-Printed Aircraft Carrier of Light-Powered Smart Micromachines for Large-Volume Nitroaromatic Explosives Removal

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 29, Issue 39, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201903872

Keywords

3D-printing; Janus micromotors; photodegradation; smart robots

Funding

  1. project Advanced Functional Nanorobots - EFRR [CZ.02.1.01/0.0/0.0/15_003/0000444]
  2. China Scholarship Council (CSC)
  3. A*STAR Grant (Singapore) [SERC A1783c0005]

Ask authors/readers for more resources

Self-propelled micro-/nanomotors are in the forefront of materials research, for applications ranging from environmental remediation to biomedicine. However, due to their limited sizes, they can only navigate within small distances, typically in the order of millimeters, which inevitably hinder their use for large-volume real applications. Here it is shown that a 3D-printed millimeter-scale motor (3DP-motor) can act as aircraft carrier of TiO2/Pt Janus micromotors and be used for enhanced large-volume environmental remediation applications. The 3DP-motor can move fast for tens of meters through the Marangoni effect by asymmetrically releasing ethanol. During its navigation, this 3DP-motor can carry and slowly release in solution TiO2/Pt Janus micromotors which can be propelled by light illumination while acting as photodegradation agents. Highly efficient degradation of nitroaromatic explosives over a large solution area is achieved. A wall-following motion of the 3DP-motor without external guidance is also demonstrated which is generated by the chemiosmotic flow at the wall vicinity. This can be easily tuned by changing the wettability of the wall surface and also modifying the shape of 3DP-motor, leading to different motion behaviors. This work introduces a new concept of micromotors carried by large millimeter sized motors to traverse long distances and it should find a broad range of applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available