4.8 Article

Low temperature propane oxidation over Co3O4 based nano-array catalysts: Ni dopant effect, reaction mechanism and structural stability

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 180, Issue -, Pages 150-160

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2015.04.021

Keywords

Nano-array catalyst; in situ DRIFTS; Low temperature propane oxidation; Isotope exchange; Reaction mechanism

Funding

  1. US Department of Energy
  2. US National Science Foundation
  3. General Electrics Graduate Fellowship for Innovation
  4. Directorate For Engineering [1344792] Funding Source: National Science Foundation

Ask authors/readers for more resources

Low temperature propane oxidation has been achieved by Co3O4-based nano-array catalysts featuring low catalytic materials loading (15 mg under flow rate of 150 mL/min). The increased Ni doping into the Co3O4 lattice has led to 100% propane conversion at low temperature (<400 degrees C) and has enhanced reaction kinetics by promoting the surface lattice oxygen activity. In situ DRIFTS investigations in tandem with isotopic oxygen exchange reveals that the propane oxidation proceeds via a Mars-van Krevelen mechanism where surface lattice oxygen acts as the active site whereas O-2 in the reaction feed does not directly participate in CO2 formation. The Ni doping promotes the formation of less stable carbonates on the surface to facilitate the CO2 desorption. The thermal stability of Ni doped Co3O4 decreases with increased Ni concentration despite the increased catalytic activity. A balance between enhanced activity and compromised thermal stability is considered in the Ni doped Co3O4 nano-array catalysts for hydrocarbon oxidation. This study provides useful and timely guidance for rational catalyst design toward low temperature catalytic oxidation. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available