4.8 Article

Ultrafast Laser Pulses Enable One-Step Graphene Patterning on Woods and Leaves for Green Electronics

Journal

ADVANCED FUNCTIONAL MATERIALS
Volume 29, Issue 33, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201902771

Keywords

biocompatible and biodegradable devices; flexible green electronics; laser-induced graphene; single-step fabrication

Funding

  1. NRF-Investigatorship [NRF-NRFI2016-05]
  2. NRF Fellowship [NRF-NRFF2015-02]
  3. Singapore National Research Foundation

Ask authors/readers for more resources

Fast, simple, cost-efficient, eco-friendly, and design-flexible patterning of high-quality graphene from abundant natural resources is of immense interest for the mass production of next-generation graphene-based green electronics. Most electronic components have been manufactured by repetitive photolithography processes involving a large number of masks, photoresists, and toxic etchants; resulting in slow, complex, expensive, less-flexible, and often corrosive electronics manufacturing processes to date. Here, a one-step formation and patterning of highly conductive graphene on natural woods and leaves by programmable irradiation of ultrafast high-photon-energy laser pulses in ambient air is presented. Direct photoconversion of woods and leaves into graphene is realized at a low temperature by intense ultrafast light pulses with controlled fluences. Green graphene electronic components of electrical interconnects, flexible temperature sensors, and energy-storing pseudocapacitors are fabricated from woods and leaves. This direct graphene synthesis is a breakthrough toward biocompatible, biodegradable, and eco-friendlily manufactured green electronics for the sustainable earth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available