4.8 Article

Nanostructured ceria-praseodymia catalysts for diesel soot combustion

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 197, Issue -, Pages 125-137

Publisher

ELSEVIER
DOI: 10.1016/j.apcatb.2015.12.030

Keywords

Ceria; Ceria-praseodymia; Soot oxidation; Nanocubes; Nanorods

Funding

  1. Ministero dell'Universita e della Ricerca (MIUR) [RBFR12LS6M 001]
  2. SINCHEM Grant
  3. Erasmus Mundus Action 1 Programme [FPA 2013-0037]

Ask authors/readers for more resources

Nanostructured ceria-praseodymia catalysts with different praseodymium contents have been prepared through hydrothermal synthesis to study the effect of Pr as a dopant and the effect of morphology towards soot combustion under loose and tight soot-catalyst conditions. Samples synthesized through solution combustion synthesis (SCS) have also been prepared as comparative materials. Studies in physicochemical properties of the catalysts have been carried out using complementary techniques. The present work also resorts to soot-TPR as an unconventional method of investigating the ability of solid catalysts to initiate soot oxidation in the absence of bulk oxygen. Ce50Pr50 catalyst (where 50 indicates the atomic percentage of cerium as well as of praseodymium) with mixed structures of nanorods and nanocubes has attained the best catalytic performances, thanks to the high lattice oxygen mobility and the easy reducibility. The insertion of Pr cations, to the ceria framework enhances the number of redox sites on the surface, thus generating more oxygen vacancies. As a whole, activity tests in general have proven that despite having relatively low surface areas, ceria-praseodymia nanocubes and nanorods facilitated soot combustion reaction more actively than SCS-based ceria-praseodymia catalysts with larger surface areas. This evidences the beneficial effect of well-defined nanostructures in soot combustion, due to their possession of highly reactive low-index facets (1 0 0) and (1 10). Within SCS-based samples, however, the specific surface area overshadows the importance of praseodymium. This eventually marks the synergistic combination of well-defined nanostructures and praseodymium as a dopant. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available