4.7 Article

A thienopyridine, CB-20, exerts diuretic activity by inhibiting urea transporters

Journal

ACTA PHARMACOLOGICA SINICA
Volume 41, Issue 1, Pages 65-72

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41401-019-0245-5

Keywords

diuretics; thienopyridine; urea transporter; electrolytes; drug discovery

Funding

  1. National Natural Science Foundation of China [81500535, 81620108029, 81330074]
  2. Leading Academic Discipline Project of Beijing Education Bureau [BMU20110254]
  3. Natural Science Foundation of Chongqing Science and Technology Commission [cstc2015jcyjA10036]

Ask authors/readers for more resources

Urea transporters (UTs) are transmembrane proteins selectively permeable to urea and play an important role in urine concentration. UT-knockout mice exhibit the urea-selective urine-concentrating defect, without affecting electrolyte balance, suggesting that UT-B inhibitors have the potential to be developed as novel diuretics. In this study, we characterized a novel compound 5-ethyl-2-methyl-3-amino-6-methylthieno[2,3-b]pyridine-2,5-dicarboxylate (CB-20) with UT inhibitory activity as novel diuretics with excellent pharmacological properties. This compound was discovered based on high-throughput virtual screening combined with the erythrocyte osmotic lysis assay. Selectivity of UT inhibitors was assayed using transwell chambers. Diuretic activity of the compound was examined in rats and mice using metabolic cages. Pharmacokinetic parameters were detected in rats using LC-MS/MS. Molecular docking was employed to predict the potential binding modes for the CB-20 with human UT-B. This compound dose-dependently inhibited UT-facilitated urea transport with IC50 values at low micromolar levels. It exhibited nearly equal inhibitory activity on both UT-A1 and UT-B. After subcutaneous administration of CB-20, the animals showed polyuria, without electrolyte imbalance and abnormal metabolism. CB-20 possessed a good absorption and rapid clearance in rat plasma. Administration of CB-20 for 5 days did not cause significant morphological abnormality in kidney or liver tissues of rats. Molecular docking showed that CB-20 was positioned near several residues in human UT-B, including Leu364, Val367, and so on. This study provides proof of evidence for the prominent diuretic activity of CB-20 by specifically inhibiting UTs. CB-20 or thienopyridine analogs may be developed as novel diuretics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available