4.7 Article

Designing high ductility in magnesium alloys

Journal

ACTA MATERIALIA
Volume 172, Issue -, Pages 161-184

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2019.04.019

Keywords

Mg alloys; < c plus a > dislocation; Cross-slip; Ductility; NEB

Funding

  1. Swiss National Science Foundation [162350]
  2. EPFL

Ask authors/readers for more resources

The thermally activated pyramidal-to-basal (PB) transition of (c + a) dislocations, transforming glissile pyramidal dissociated core structures into sessile basal dissociated ones, lies at the origin of low ductility in pure magnesium (Mg). Solute-accelerated cross-slip and double cross-slip of pyramidal (c + a) dislocations have recently been proposed as a mechanism that can circumvent the deleterious effects of the PB transition by enabling rapid dislocation multiplication and isolating PB-transformed sessile segments. Here, the theory for solute-accelerated cross-slip is revisited with an explicit atomistic derivation, is extended to include multiple very dilute solute concentrations, and various aspects of the theory are demonstrated computationally. DFT inputs to the theory for a wide range of new alloying elements are presented. The theory is validated by comparing predicted ductility to literature experiments for a range of alloys. The theory is then applied to predict composition ranges for ductility in rare-earth free ternary and quaternary dilute alloys. The wide range of new alloys predicted to be ductile can serve as a guide to experimental development of new ductile Mg alloys. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available