4.8 Article

Epitaxial Ge0.81Sn0.19 Nanowires for Nanoscale Mid-Infrared Emitters

Journal

ACS NANO
Volume 13, Issue 7, Pages 8047-8054

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsnano.9b02843

Keywords

semiconductor; nanowires; epitaxy; direct band gap; germanium; tin

Funding

  1. Fonds zur Forderung der Wissenschaftlichen Forschung (FWF), Austria [P 28524]
  2. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [413940754]
  3. European Union [735008]

Ask authors/readers for more resources

Highly oriented Ge0.81Sn0.19 nanowires have been synthesized by a low-temperature chemical vapor deposition growth technique. The nanostructures form by a self-seeded vapor liquid solid mechanism. In this process, liquid metallic Sn seeds enable the anisotropic crystal growth and act as a sole source of Sn for the formation of the metastable Ge1-xSnx semiconductor material. The strain relaxation for a lattice mismatch of epsilon = 2.94% between the Ge (111) substrate and the constant Ge0.81Sn0.19 composition of nanowires is confined to a transition zone of <100 nm. In contrast, Ge1-xSnx structures with diameters in the micrometer range show a 5-fold longer compositional gradient very similar to epitaxial thin-film growth. Effects of the Sn growth promoters' dimensions on the morphological and compositional evolution of Ge1-xSnx are described. The temperature- and laser power-dependent photoluminescence analyses verify the formation of a direct band gap material with emission in the mid-infrared region and values expected for unstrained Ge0.81Sn0.19 (e.g., band gap of 0.3 eV at room temperature). These materials hold promise in applications such as thermal imaging and photodetection as well as building blocks for group IV-based mid- to near-IR photonics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available