4.8 Article

Thermoelectric Property in Orthorhombic-Domained SnSe Film

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 30, Pages 27057-27063

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b04868

Keywords

thermoelectric material; SnSe; film; carrier scattering; crystalline defect

Funding

  1. [16K18237]

Ask authors/readers for more resources

Single-crystal SnSe exhibits extremely high thermoelectric properties, and fabrication of SnSe films is promising for practical application and basic research on properties. However, the high thermoelectric properties have not yet been reported in SnSe films and their thermoelectric properties and nanostructure have not yet been analyzed in detail. In the present study, a-axis-oriented epitaxial SnSe films were prepared to discuss the thermoelectric properties of the SnSe films. While the electrical conductivity of the films was orders of magnitude smaller than that in the single crystals at room temperature, surprisingly, the thermoelectric property (power factor) of the films was slightly higher than that in the single crystals at high temperatures (similar to 300 degrees C). The SnSe films contained orthorhombic domain boundaries with a spacing of several hundred nanometers. The orthorhombic domain boundaries caused carrier scattering and degraded the mobility of the films at room temperature, but their effect decreased with increasing temperature. Thus, the carrier scattering at domain boundaries results in characteristic temperature dependence of thermoelectric properties in the SnSe films. High thermoelectric properties at high temperatures were successfully achieved in the SnSe films in spite of the existence of domain boundaries, demonstrating the possibility of high-performance of SnSe thermoelectric films.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available