4.8 Article

Influence of Lanthanum Doping on Structural and Electrical/Electrochemical Properties of Double Perovskite Sr2CoMoO6 as Anode Materials for Intermediate-Temperature Solid Oxide Fuel Cells

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 11, Issue 27, Pages 24659-24667

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.9b03481

Keywords

double perovskites; X-ray photoelectron spectroscopy analysis; electrical conductivity; area-specific resistance; IT-SOFC anode materials

Funding

  1. SERB [PDF/2016/002021]

Ask authors/readers for more resources

Lanthanum (La3+)-doped double perovskites Sr2CoMoO6 (Sr2-xLaxCoMoO6, 0.00 <= x <= 0.03) were synthesized via the citrate-nitrate autocombustion route. The Reitveld refinement analysis of X-ray diffraction reveals the tetragonal symmetry as the main phase with space group I4/m and also confirms the presence of some peaks corresponding to extra phase SrMoO4. The SEM micrograph images reflect that grains are in irregular shape and sizes for all samples. Average grain size gradually decreases with the increase of the SrMoO4 phase. The X-ray photoelectron spectroscopy (XPS) analysis confirms the presence of mixed valence states of Mos(+)/Mo6+, Co2+/Co3+, and O-lattice/O-chemisorbed/O-physisorbed species. Coefficient of thermal expansion (CTE) analysis shows that the particular composition Sr1.97La0.03CoMoO6 has the lowest CTE value among the compositions studied. The electrical conductivity of Sr2CoMoO6 is enhanced effectively by doping La at Sr sites. The measured area-specific resistance (ASR) for the composition Sr1.97La0.03CoMoO6 (SLCM03) is found to be appreciably low, similar to 0.053 Ohm cm(-2) at 800 degrees C. The obtained highest electrical conductivity with the lowest activation energy and low ASR value for the composition Sr1.97La0.03CoMoO6 encompasses it as a promising candidate for anode material in the intermediate-temperature solid oxide fuel cell (IT-SOFC) application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available