4.6 Article

An empower hamilton loop based data collection algorithm with mobile agent for WSNs

Journal

Publisher

SPRINGEROPEN
DOI: 10.1186/s13673-019-0179-4

Keywords

Wireless sensor networks; Hamilton loop; Energy efficiency; Delay; Optimization algorithm

Funding

  1. National Natural Science Foundation of China [61772454, 61811530332, 61811540410]

Ask authors/readers for more resources

In wireless sensor networks (WSNs), sensor devices must be equipped with the capabilities of sensing, computation and communication. These devices work continuously through non-rechargeable batteries under harsh conditions, the batter span of nodes determines the whole network lifetime. Network clustering adopts an energy neutral approach to extend the network life. The clustering methods can be divided into even and uneven clustering. If even clustering is adopted, it will cause the cluster head nodes (CHs) in vicinity of the base station to relay more data and cause energy hole phenomenon. Therefore, we adopt a non-uniform clustering method to alleviate the problem of energy hole. Furthermore, to further balance and remit resource overhead of the entire network, we combined the PEGASIS algorithm and the Hamilton loop algorithm, through a mixture of single-hop and multiple hops mechanisms, inserting a mobile agent node (MA) and designing an optimal empower Hamilton loop is obtained by the local optimization algorithm. MA is responsible for receiving and fusing packet from the CHs on the path. Network performance results show that the proposed routing algorithm can effectively prolong network lifetime, equalize resource expenditure and decrease the propagation delay.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available