4.7 Article

Folic Acid-Functionalized Black Phosphorus Quantum Dots for Targeted Chemo-Photothermal Combination Cancer Therapy

Journal

PHARMACEUTICS
Volume 11, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/pharmaceutics11050242

Keywords

cancer targeted therapy; drug delivery; black phosphorus; quantum dots; photothermal therapy

Funding

  1. National Natural Science Foundation of China [81772449, 81771966, 51703258]
  2. Guangzhou Science, Technology and Innovation Commission [201804010309, 201803010090]
  3. Science, Technology and Innovation Commission of Shenzhen Municipality [JCYJ20160531195129079, JCYJ20170811160129498, JCYJ20180307154606793]

Ask authors/readers for more resources

Due to the inherent limitations, single chemo or photothermal therapies (PTT) are always inefficient. The combination of chemotherapy and PTT for the treatment of cancers has attracted a great interest during the past few years. As a photothermal agent, black phosphorus quantum dots (BPQDs) possess an excellent extinction coefficient, high photothermal conversion efficacy, and good biocompatibility. Herein, we developed a photo- and pH-sensitive nanoparticle based on BPQDs for targeted chemo-photothermal therapy. Doxorubicin (DOX) was employed as a model drug. This nanosystem displayed outstanding photothermal performance both in vitro and in vivo. Folic acid conjugation onto the surface endowed this system an excellent tumor-targeting effect, which was demonstrated by the cellular targeting assay. The BPQDs-based drug delivery system exhibited pH- and photo-responsive release properties, which could reduce the potential damage to normal cells. The in vitro cell viability study showed a synergistic effect in suppressing cancer cell proliferation. Therefore, this BPQDs-based drug delivery system has substantial potential for future clinical applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available