4.4 Article

Diffusiophoretic and diffusioosmotic velocities for mixtures of valence-asymmetric electrolytes

Journal

PHYSICAL REVIEW FLUIDS
Volume 4, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevFluids.4.043702

Keywords

-

Funding

  1. Andlinger Center for Energy and the Environment at Princeton University
  2. NSF [CBET-1702693]

Ask authors/readers for more resources

Diffusiophoresis and diffusioosmosis are electrokinetic phenomena where relative motion is induced between a charged surface and a surrounding electrolyte due to a concentration gradient of ions. In the literature, a relative velocity between a surface and the electrolyte has been derived for a valence-symmetric (z:z) electrolyte. In this article, we reformulate the governing equations in a convenient form based on a systematic generalization of the nonlinear Poisson-Boltzmann equations in the limit of a thin double layer, which allows us to derive results for diffusiophoretic and diffusioosmotic velocities for a mixture of electrolytes with a general combination of cation and anion valences. We find that the relative motion depends significantly on ion valences. We also provide analytical approximations for the diffusiophoretic and diffusioosmotic velocities and discuss their accuracy and applicability. Further, we tabulate diffusiphoretic velocities for some common cases, which highlights the importance of asymmetry in cation and anion valences. Finally, we discuss the validity of our assumptions and the importance of effects such as finite ion size, dielectric decrement, and surface conduction for typical experimental conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available