4.6 Article

Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics

Journal

ACS ENERGY LETTERS
Volume 4, Issue 6, Pages 1231-1240

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsenergylett.9b00608

Keywords

-

Funding

  1. Office of Naval Research [N00014-15-1-2713]
  2. UQ Development Fellowship

Ask authors/readers for more resources

The intrinsic instability of hybrid perovskite materials induced by defect states arises as one major challenge hampering the commercialization of perovskite solar cells (PSCs). Here, we report a facile strategy of wrapping perovskite grains within an oligomeric silica (OS) matrix in a core-shell geometry, which can synchronously passivate the defects at surfaces and grain boundaries and stabilize the grains at the nanoscale. We observe a significant reduction of trap density and elongation of carrier lifetime in OS-wrapped perovskites, which yields an increased efficiency of 21.5% for p-i-n structured PSCs with a decent open-circuit voltage of 1.15 V and a fill factor of 0.81. This all-around nanoscale grain wrapping leads to remarkable improvement of the operational stability of PSCs, sustaining 80% of the efficiency after burn-in under full sunlight with UV for more than 5200 h. Our findings provide a new pathway towards efficient and stable PSCs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available