4.7 Article Data Paper

High-throughput calculations of catalytic properties of bimetallic alloy surfaces

Journal

SCIENTIFIC DATA
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/s41597-019-0080-z

Keywords

-

Funding

  1. U.S. Department of Energy, Chemical Sciences, Geosciences, and Biosciences (CSGB) Division of the Office of Basic Energy Sciences [DE-AC02-76SF00515]

Ask authors/readers for more resources

A comprehensive database of chemical properties on a vast set of transition metal surfaces has the potential to accelerate the discovery of novel catalytic materials for energy and industrial applications. In this data descriptor, we present such an extensive study of chemisorption properties of important adsorbates - e.g., C, O, N, H, S, CHx, OH, NH, and SH - on 2,035 bimetallic alloy surfaces in 5 different stoichiometric ratios, i. e., 0%, 25%, 50%, 75%, and 100%. To our knowledge, it is the first systematic study to compile the adsorption properties of such a well-defined, large chemical space of catalytic interest. We propose that a collection of catalytic properties of this magnitude can assist with the development of machine learning enabled surrogate models in theoretical catalysis research to design robust catalysts with high activity for challenging chemical transformations. This database is made publicly available through the platform www.Catalysis-hub.org for easy retrieval of the data for further scientific analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available