4.6 Article

Compensation of Limited Bandwidth and Nonlinearity for Coherent Transponder

Journal

APPLIED SCIENCES-BASEL
Volume 9, Issue 9, Pages -

Publisher

MDPI
DOI: 10.3390/app9091758

Keywords

coherent communication; optical communication; pluggable module

Ask authors/readers for more resources

Coherent optical transponders are widely deployed in today's long haul and metro optical networks using dense wavelength division multiplexing. To increase the data carrying capacity, the coherent transponder utilizes the high order modulation format and operates at a high baud rate. The limited bandwidth and the nonlinearity are two critical impairments for the coherent in-phase quadrature transmitter. These impairments can be mitigated by digital filters. However, to accurately determine the coefficients of these filters is difficult because the impairment from the limited bandwidth and the impairment from nonlinearity are coupled together. In this paper, we present a novel method to solve this problem. During the initial power-up, we apply a sinusoidal stimulus to the coherent IQ transmitter. We then scan the frequency and amplitude of the stimulus and monitor the output power. By curve-fitting with an accurate mathematical model, we determine the limited bandwidth, the nonlinearity, the power imbalance, and the bias point of the transponder simultaneously. Optimized coefficients of the digital filters are determined accordingly. Furthermore, we utilize a coherent IQ transponder and demonstrate that the limited bandwidth is improved by the finite impulse response filter, while nonlinearity is mitigated by the memoryless Volterra filter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available