4.8 Article

An autologous platelet-rich plasma hydrogel compound restores left ventricular structure, function and ameliorates adverse remodeling in a minimally invasive large animal myocardial restoration model: A translational approach Vu and Pal Myocardial Repair: PRP, Hydrogel and Supplements

Journal

BIOMATERIALS
Volume 45, Issue -, Pages 27-35

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2014.12.013

Keywords

Myocardial infarction; Heart failure; Platelet-rich plasma; Hyaluronic acid-based hydrogels; Antioxidants; Left ventricular restoration

Funding

  1. National Medical Research Council (NMRC), Singapore [NMRC/CG/NUHCS/2010]

Ask authors/readers for more resources

Aims: Cell-based myocardial restoration has not penetrated broad clinical practice yet due to poor cell retention and survival rates. In this study, we attempt a translational, large-scale restorative but minimally invasive approach in the pig, aiming at both structurally stabilizing the left ventricular (LV) wall and enhancing function following ischemic injury. Methods and results: A myocardial infarction (MI) was created by permanent ligation of left circumflex coronary artery through a small lateral thoracotomy. Thirty-six Yorkshire pigs were randomized to receive transthoracic intramyocardial injection into both infarct and border zone areas with different compounds: 1) Hyaluronic acid-based hydrogel; 2) autologous platelet-rich plasma (PRP); 3) ascorbic acid-enriched hydrogel (50 mg/L), combined with IV ibuprofen (25 mg/kg) and allopurinol (25 mg/kg) (cocktail group); 4) PRP and cocktail (full-compound); or 5) saline (control). The latter two groups received daily oral ibuprofen (25 mg/kg) for 7 days and allopurinol (25 mg/kg) for 30 days, post-operatively. Hemodynamic and echocardiographic studies were carried out at baseline, immediately after infarction and at end-point. Eight weeks after MI, the full-compound group had better LV fractional area change, ejection fraction and smaller LV dimensions than the control group. Also, dp/dt(max) was significantly higher in the full-compound group when the heart rate increased from 100 bpm to 160bpm in stress tests. Blood vessel density was higher in the full-compound group, compared to the other treatment groups. Conclusions: A combination of PRP, anti-oxidant and anti-inflammatory factors with intramyocardial injection of hydrogel has the potential to structurally and functionally improve the injured heart muscle while attenuating adverse cardiac remodeling after acute myocardial infarction. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available