4.6 Article

Single photon emission in WSe2 up 160 K by quantum yield control

Journal

2D MATERIALS
Volume 6, Issue 3, Pages -

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/2053-1583/ab15fe

Keywords

quantum emitter; excitons; plasmonics; single photon source; thermal activation; quantum yield; Purcell effect

Funding

  1. National Science Foundation (NSF) [DMR-1809235, DMR-1809361]
  2. NSF [ECCS-MRI-1531237]

Ask authors/readers for more resources

2D semiconductors hosting strain-induced quantum emitters offer unique abilities to achieve scalable architectures for deterministic coupling to nanocavities and waveguides that are required to enable chip-based quantum information processing technologies. A severe drawback remains that exciton emission from quantum emitters in WSe2 quenches beyond 30 K, which requires cryogenic cooling. Here we demonstrate an approach to increase the temperature survival of exciton quantum emitters in WSe2 that is based on maximizing the emitter quantum yield. Utilizing optimized material growth that leads to reduced density of nonradiative defects as well as coupling of the exciton emission to plasmonic nanocavities modes, we achieve average quantum yields up to 44%, thermal activation energies up to 92 meV, and single photon emission signatures up to temperatures of 160 K. At these values non-cryogenic cooling with thermo-electric chips becomes already feasible, while quantitative analysis shows that room temperature operation is within reach through active strain engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available