4.6 Review

Microbial Genes for a Circular and Sustainable Bio-PET Economy

Journal

GENES
Volume 10, Issue 5, Pages -

Publisher

MDPI
DOI: 10.3390/genes10050373

Keywords

plastics; biodegradation; sustainability; upcycling; biotransformations; polyethylene terephthalate; terephthalate; ethylene glycol

Funding

  1. European Union's Horizon 2020 research and innovation programme [633962]
  2. Biotechnology and Biological Sciences Research Council (BBSRC) [BB/M009769/1]
  3. Engineering and Physical Sciences Research Council (EPSRC) [EP/N025504/1]
  4. Petroleum Technology Development Fund of Nigeria
  5. BBSRC [BB/M017702/1, BB/M009769/1] Funding Source: UKRI
  6. EPSRC [EP/N025504/1] Funding Source: UKRI

Ask authors/readers for more resources

Plastics have become an important environmental concern due to their durability and resistance to degradation. Out of all plastic materials, polyesters such as polyethylene terephthalate (PET) are amenable to biological degradation due to the action of microbial polyester hydrolases. The hydrolysis products obtained from PET can thereby be used for the synthesis of novel PET as well as become a potential carbon source for microorganisms. In addition, microorganisms and biomass can be used for the synthesis of the constituent monomers of PET from renewable sources. The combination of both biodegradation and biosynthesis would enable a completely circular bio-PET economy beyond the conventional recycling processes. Circular strategies like this could contribute to significantly decreasing the environmental impact of our dependence on this polymer. Here we review the efforts made towards turning PET into a viable feedstock for microbial transformations. We highlight current bottlenecks in degradation of the polymer and metabolism of the monomers, and we showcase fully biological or semisynthetic processes leading to the synthesis of PET from sustainable substrates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available